论文标题
在可测量函数的代数上翻译不变的衍生物不存在
Non-existence of translation-invariant derivations on algebras of measurable functions
论文作者
论文摘要
令$ s(0,1)$为$*$ - 在单位间隔$(0,1)$上的所有类别可测量函数的代数,然后让$(\ Mathcal {a},\ weled \ | \ | \ | \ cdot \ cdot \ cdot \ cdot \ cdot \ right | _ \ | _ \ | _ \ mathcal {a} $是一个完整的$ - $ s(0,1)$,其中简单函数是密度的,例如$ l_ \ infty(0,1)$,$ l _ {\ log}(0,1)$,$ s(0,1)$和ARENS代数$ l^ω(0,1)$,配备了自然$δ$ -Norms。我们表明,没有非平凡的推导$δ:\ mathcal {a} \ to s(0,1)$通勤,单位间隔的所有二元翻译。令$ \ MATHCAL {M} $为$ ii $(或$ i_ \ infty $)von Neumann代数,$ \ Mathcal {a} $是其Abelian von Neumann subalgebra,Let $ s(\ Mathcal {M})$是所有测量$ callcal $ callcal $ callcal $ callcal $ calcal。 我们表明,任何非平凡的推导$δ:\ Mathcal {a} \ to s(\ Mathcal {a})$都不能扩展到$ s(\ Mathcal {M})$的派生。特别是,我们在\ cite {bks1}中回答一个未经处理的问题。
Let $S(0,1)$ be the $*$-algebra of all classes of Lebesgue measurable functions on the unit interval $(0,1)$ and let $(\mathcal{A},\left\|\cdot \right\|_\mathcal{A})$ be a complete symmetric $Δ$-normed $*$-subalgebra of $S(0,1)$, in which simple functions are dense, e.g., $L_\infty (0,1)$, $L_{\log}(0,1)$, $S(0,1)$ and the Arens algebra $L^ω(0,1)$ equipped with their natural $Δ$-norms. We show that there exists no non-trivial derivation $ δ: \mathcal{A} \to S(0,1)$ commuting with all dyadic translations of the unit interval. Let $\mathcal{M}$ be a type $II$ (or $I_\infty$) von Neumann algebra, $\mathcal{A}$ be its abelian von Neumann subalgebra, let $S(\mathcal{M})$ be the algebra of all measurable operators affiliated with $\mathcal{M}$. We show that any non-trivial derivation $δ:\mathcal{A} \to S(\mathcal{A})$ can not be extended to a derivation on $S(\mathcal{M})$. In particular, we answer an untreated question in \cite{BKS1}.