论文标题

舞蹈:使用诱饵增强显着图

DANCE: Enhancing saliency maps using decoys

论文作者

Lu, Yang, Guo, Wenbo, Xing, Xinyu, Noble, William Stafford

论文摘要

显着性方法可以通过识别输入样本中的一组关键特征,例如像素对图像分类器做出的预测最大的预测,可以使深度神经网络预测更加解释。不幸的是,最近的证据表明,许多显着性方法的性能较差,尤其是在梯度饱和的情况下,输入包含对抗性扰动或预测取决于功能间的依赖性。为了解决这些问题,我们提出了一个框架,该框架通过遵循两步程序来提高显着性方法的鲁棒性。首先,我们引入了一种扰动机制,该机制在不改变其中间表示的情况下巧妙地改变了输入样本。使用这种方法,我们可以收集一系列扰动的数据样本,同时确保扰动和原始输入样本遵循相同的分布。其次,我们计算出扰动样品的显着图,并提出了一种汇总显着性图的新方法。通过这种设计,我们抵消了梯度饱和对解释的影响。从理论的角度来看,我们表明汇总的显着性图不仅可以捕获场间依赖性,而且更重要的是,对先前描述的对抗性扰动方法进行了鲁棒的解释。经过理论分析,我们提出了实验结果,这表明,无论是定性和定量,我们的显着性方法都优于现有方法。

Saliency methods can make deep neural network predictions more interpretable by identifying a set of critical features in an input sample, such as pixels that contribute most strongly to a prediction made by an image classifier. Unfortunately, recent evidence suggests that many saliency methods poorly perform, especially in situations where gradients are saturated, inputs contain adversarial perturbations, or predictions rely upon inter-feature dependence. To address these issues, we propose a framework that improves the robustness of saliency methods by following a two-step procedure. First, we introduce a perturbation mechanism that subtly varies the input sample without changing its intermediate representations. Using this approach, we can gather a corpus of perturbed data samples while ensuring that the perturbed and original input samples follow the same distribution. Second, we compute saliency maps for the perturbed samples and propose a new method to aggregate saliency maps. With this design, we offset the gradient saturation influence upon interpretation. From a theoretical perspective, we show the aggregated saliency map could not only capture inter-feature dependence but, more importantly, robustify interpretation against previously described adversarial perturbation methods. Following our theoretical analysis, we present experimental results suggesting that, both qualitatively and quantitatively, our saliency method outperforms existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源