论文标题

Dynotears:从时间序列数据中学习的结构

DYNOTEARS: Structure Learning from Time-Series Data

论文作者

Pamfil, Roxana, Sriwattanaworachai, Nisara, Desai, Shaan, Pilgerstorfer, Philip, Beaumont, Paul, Georgatzis, Konstantinos, Aragam, Bryon

论文摘要

我们重新审视动态贝叶斯网络的结构学习问题,并提出了一种方法,该方法同时估算了时间序列中变量之间的同时(内部内部)和时置(式)关系。我们的方法是基于得分的,并且围绕受到超级限制的受损失的最小化。为了解决这个问题,我们利用将无环限制为平滑的平等约束的最新代数结果。我们称之为Dynotears的结果算法优于模拟数据的其他方法,尤其是随着变量数量的增加,高维度。我们还将该算法应用于来自两个不同领域的实际数据集,即金融和分子生物学,并分析所得的输出。与学习动态贝叶斯网络的最新方法相比,我们的方法在实际数据上既可扩展又准确。我们方法的简单表述和竞争性能使其适合各种问题,他们试图在跨时间学习变量之间的联系。

We revisit the structure learning problem for dynamic Bayesian networks and propose a method that simultaneously estimates contemporaneous (intra-slice) and time-lagged (inter-slice) relationships between variables in a time-series. Our approach is score-based, and revolves around minimizing a penalized loss subject to an acyclicity constraint. To solve this problem, we leverage a recent algebraic result characterizing the acyclicity constraint as a smooth equality constraint. The resulting algorithm, which we call DYNOTEARS, outperforms other methods on simulated data, especially in high-dimensions as the number of variables increases. We also apply this algorithm on real datasets from two different domains, finance and molecular biology, and analyze the resulting output. Compared to state-of-the-art methods for learning dynamic Bayesian networks, our method is both scalable and accurate on real data. The simple formulation and competitive performance of our method make it suitable for a variety of problems where one seeks to learn connections between variables across time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源