论文标题

关于尾巴的身份

On Sum-Of-Tails Identities

论文作者

Gupta, Rajat

论文摘要

在本文中,获得了Andrews和Freitas的一般尾巴身份的有限类似物。我们得出了几个有趣的结果,因为这种类似物的特殊情况,特别是dixit,eyyyunni,maji和sood的最新身份。我们通过帮助Andrews,Garvan和Liang的尾巴标识,Ramanujan的身份以及两个新的结果以及Ramanujan的功能$σ(Q)$,另一个针对该功能和Ballantine介绍的功能。后来,我们引入了一个新的概括$ \ mathrm {ffw} _ {c}(n)$的fokkink,fokkink和wang的函数,并为其生成功能得出了身份。作为特殊情况,这给出了Andrews,Garvan和Liang给出的$ \ mathrm {spt}(n)$的生成功能的最新表示。我们还通过组合技术获得了一些加权分区身份,以及Ramanujan的两个三阶模拟theta函数的新表示形式。

In this article, a finite analogue of the generalized sum-of-tails identity of Andrews and Freitas is obtained. We derive several interesting results as special cases of this analogue, in particular, a recent identity of Dixit, Eyyyunni, Maji and Sood. We derive a new extension of Abel's lemma with the help of which we obtain a one-parameter generalization of a sum-of-tails identity of Andrews, Garvan and Liang, an identity of Ramanujan as well as two new results - one for Ramanujan's function $σ(q)$ and another for the function recently introduced by Andrews and Ballantine. Later we introduce a new generalization $\mathrm{FFW}_{c}(n)$ of a function of Fokkink, Fokkink and Wang and derive an identity for its generating function. This gives, as a special case, a recent representation for the generating function of $\mathrm{spt}(n)$ given by Andrews, Garvan and Liang. We also obtain some weighted partition identities along with new representations for two of Ramanujan's third order mock theta functions through combinatorial techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源