论文标题
在流动的理想不可压缩的太阳风等离子体中,Hall-Magnetodrodnannalnannalnannalnannalnannalnannalnannalnalnannalnalnannic Wave:重新考虑
Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas: Reconsidered
论文作者
论文摘要
众所周知,磁结构化的太阳大气支持MHD波的传播,沿各种喷气式飞机也包括太阳风。同样众所周知的是,在某些条件下,即足够高的喷射速度,传播的MHD模式可能会与最常见的开尔文 - 赫尔姆霍尔茨不稳定(KHI)变得不稳定。在本文中,我们探讨了在理想的Hall-Magnetohydrodnymics的框架中研究沿慢性太阳能MHD模式奔跑的传播和不稳定性特征如何受到影响。如果喷气宽度比所谓的Hall参数$ l_ \ Mathrm {Hall} = C/ω__\ Mathrm {pi} $(其中$ c $是光的速度,$ω__\ mathrm {pi} $是iion plasma频率),则Hall-MHD适用。我们将太阳风模拟为速度$ \ vec {v} _0 $ cylindrical flux tube tube $ a $ $ a $,其中包含不可压缩的等离子体,其密度$ρ_\ mathrm {i} $渗透到恒定的磁场$ \ vec {b} b} b} b} _ _ \ mathrm mathrm {i} $} $ {i}。周围的等离子体的特征是其密度$ρ_\ mathrm {e} $和磁场$ \ vec {b} _ \ mathrm {e} $。 MHD波的分散关系在标准和HALL-MHD的框架中得出,并用输入参数在数值上求解:密度对比度$η=ρ_\ Mathrm {E}/ρ_\ Mathrm {i} {B} _ \ Mathrm {E}/{B} _ \ Mathrm {I} $和Hall Scale参数$ L_ \ Mathrm {Hall}/A $。发现霍尔电流以$ l_ \ mathrm {hall}/a $的中等值刺激了纠结的Khi($ m = 1)$和高模式和高模式($ m \ geqslant 2 $ 2 $)MHD浪潮,而Sausage wave($ m = 0 $)的趋势恰好是KHI是-KHI是-Susted-hi是 -
It is well established that the magnetically structured solar atmosphere supports the propagation of MHD waves along various kind of jets including also the solar wind. It is well-known as well that under some conditions, namely high enough jet speeds, the propagating MHD modes can become unstable against to the most common Kelvin--Helmholtz instability (KHI). In this article, we explore how the propagation and instability characteristics of running along a slow solar wind MHD modes are affected when they are investigated in the framework of the ideal Hall-magnetohydrodynamics. Hall-MHD is applicable if the jet width is shorter than or comparable to the so called Hall parameter $l_\mathrm{Hall} = c/ω_\mathrm{pi}$ (where $c$ is the speed of light and $ω_\mathrm{pi}$ is the ion plasma frequency). We model the solar wind as a moving with velocity $\vec{v}_0$ cylindrical flux tube of radius $a$, containing incompressible plasma with density $ρ_\mathrm{i}$ permeated by a constant magnetic field $\vec{B}_\mathrm{i}$. The surrounding plasma is characterized with its density $ρ_\mathrm{e}$ and magnetic field $\vec{B}_\mathrm{e}$. The dispersion relation of MHD waves is derived in the framework of both standard and Hall-MHD and is numerically solved with input parameters: the density contrast $η= ρ_\mathrm{e}/ρ_\mathrm{i}$, the magnetic fields ratio $b = {B}_\mathrm{e}/{B}_\mathrm{i}$, and the Hall scale parameter $l_\mathrm{Hall}/a$. It is found that the Hall current, at moderate values of $l_\mathrm{Hall}/a$, stimulates the emerging of KHI of the kink ($m = 1)$ and high-mode ($m \geqslant 2$) MHD waves, while for the sausage wave ($m = 0$) the trend is just the opposite---the KHI is suppressed.