论文标题
在pelc和prikry的定理上,在不变的borel措施范围内不存在
On a theorem of Pelc and Prikry on the nonexistence of invariant extensions of Borel measures
论文作者
论文摘要
在实际线路中有一定的一定的集合的Sigma-Elgebras,这些代数不接受任何非零的,sigma-finite,扩散(或连续)度量。可以通过使用某些特殊类型的无限矩阵(称为Banach-Kuratowski矩阵)来获得这种次数产生的Sigma-Algebras,并且可以将其用于得出PELC和Prikry定理的广义版本,如Kharazishvili所示。在本文中,使用一些组合集理论的方法以及最初由Riecan,Riecan和Neubrunn引入的小型概念的一些修改版本,我们为PELC和Prikry's在空间中的pelc and Prikry's Therorem提供了抽象而广义的表述。
There are certain countably generated sigma-algebras of sets in the real line which do not admit any non-zero, sigma-finite, diffused (or, continuous) measure. Such countably generated sigma-algebras can be obtained by the use of some special types of infinite matrix known as the Banach-Kuratowski matrix and the same may be used in deriving a generalized version of Pelc and Prikry's theorem as shown by Kharazishvili. In this paper, using some methods of combinatorial set theory and some modified version of the notion of small sets originally introduced by Riecan, Riecan and Neubrunn, we give an abstract and generalized formulation of Pelc and Prikry's theorem in spaces with transformation groups.