论文标题

完整图和周期的笛卡尔产品的匹配书籍嵌入

Matching Book Embedding of the Cartesian Product of a Complete Graph and a Cycle

论文作者

Shao, Zeling, Liu, Yanqing, Li, Zhiguo

论文摘要

$ book $ $嵌入图$ g $的$是将$ g $的顶点放在脊柱上并将边缘绘制到页面上,以使同一页面中的边缘不会相互交叉。如果页面的最高学位$ 1 $,则本书嵌入为$匹配$。 $匹配的$ $ book $ $ $厚度$是图形可以匹配嵌入的书籍的最小页面。在本文中,我们表明笛卡尔产品的匹配书籍厚度$ k_p \ box c_q $ a a comp $ k_p $和一个循环$ c_q $等于$δ(k_p \ box c_q)+1 $。

The $book$ $embedding$ of a graph $G$ is to place the vertices of $G$ on the spine and draw the edges to the pages so that the edges in the same page do not cross with each other. The book embedding is $matching$ if the pages have maximum degree $1$. The $matching$ $book$ $thickness$ is the minimum number of pages in which graphs can be matching book embedded. In this paper, we show that the matching book thickness of the Cartesian product $K_p\Box C_q$of a complete graph $K_p$ and a cycle $C_q$ is equal to $Δ(K_p\Box C_q)+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源