论文标题
$κ= t^{ - 1/n} $和ding-iohara-miki代数的操作员的非平稳ruijsenaars功能
Non-Stationary Ruijsenaars Functions for $κ=t^{-1/N}$ and Intertwining Operators of Ding-Iohara-Miki Algebra
论文作者
论文摘要
We construct the non-stationary Ruijsenaars functions (affine analogue of the Macdonald functions) in the special case $κ=t^{-1/N}$, using the intertwining operators of the Ding-Iohara-Miki algebra (DIM algebra) associated with $N$-fold Fock tensor spaces.通过交织在一起的$ s $ - 双重性,对于具有$κ= t^{ - 1/n} $的非平稳ruijsenaars功能获得了另一种表达,这可以被视为自然椭圆形升降,这是对多变量Elliptic Elliptic Elliptic Hyperiptric Hyperemysectric serive insyptotic MacDonald函数的自然升降。我们还研究了当前代数框架中出现的DIM代数的顶点操作员的某些属性;与椭圆形的Ruijsenaars运算符上下班的积分操作员,以及在共形限制$ Q \ rightarrow 1 $中,顶点操作员向Virasoro主要字段的退化。
We construct the non-stationary Ruijsenaars functions (affine analogue of the Macdonald functions) in the special case $κ=t^{-1/N}$, using the intertwining operators of the Ding-Iohara-Miki algebra (DIM algebra) associated with $N$-fold Fock tensor spaces. By the $S$-duality of the intertwiners, another expression is obtained for the non-stationary Ruijsenaars functions with $κ=t^{-1/N}$, which can be regarded as a natural elliptic lift of the asymptotic Macdonald functions to the multivariate elliptic hypergeometric series. We also investigate some properties of the vertex operator of the DIM algebra appearing in the present algebraic framework; an integral operator which commutes with the elliptic Ruijsenaars operator, and the degeneration of the vertex operators to the Virasoro primary fields in the conformal limit $q \rightarrow 1$.