论文标题
不变的kähler潜力和符合性降低
Invariant Kähler potentials and symplectic reduction
论文作者
论文摘要
对于适当的哈密顿式$ g $在kähler歧管$(x,ω)$上的hamiltonian动作,带有动量映射$μ$,我们表明符号减少$μ^{ - 1}(-1}(0)/g $是一个正常的复杂空间。 $μ^{ - 1}(0)$中的每个点都有$ g $稳定的开放式社区,$ω$和$μ$由$ g $ -Invariant的Kähler潜力给出。这用于表明$μ^{ - 1}(0)/g $是Kähler空间。此外,我们研究了从$μ^{ - 1}(0)$的潜力的存在,并具有正面和负结果。
For a proper Hamiltonian action of a Lie group $G$ on a Kähler manifold $(X,ω)$ with momentum map $μ$ we show that the symplectic reduction $μ^{-1}(0)/G$ is a normal complex space. Every point in $μ^{-1}(0)$ has a $G$-stable open neighborhood on which $ω$ and $μ$ are given by a $G$-invariant Kähler potential. This is used to show that $μ^{-1}(0)/G$ is a Kähler space. Furthermore we examine the existence of potentials away from $μ^{-1}(0)$ with both positive and negative results.