论文标题

用于交通监视的无培训单眼3D事件检测系统

Training-free Monocular 3D Event Detection System for Traffic Surveillance

论文作者

Yu, Lijun, Chen, Peng, Liu, Wenhe, Kang, Guoliang, Hauptmann, Alexander G.

论文摘要

我们专注于在监视情况下检测交通事件的问题,包括检测车辆行动和交通碰撞。现有的事件检测系统主要是基于学习的,并且在提供大量培训数据时就达到了令人信服的性能。但是,在实际情况下,收集足够的标记培训数据是昂贵的,有时是不可能的(例如,用于交通碰撞检测)。此外,监视视图的常规2D表示很容易受到自然界中不同的相机视图的影响。为了解决上述问题,在本文中,我们提出了一个无培训的单眼3D事件检测系统,以进行交通监视。我们的系统首先将车辆投射到3D欧几里得空间中,并估算其运动学状态。然后,我们开发了基于运动模式的多种简单而有效的方法来识别事件,而这些模式无需进一步的培训。因此,我们的系统对闭塞和观点的变化是强大的。独家实验报告了我们在大规模现实监视数据集上方法的出色结果,该数据集验证了我们提出的系统的有效性。

We focus on the problem of detecting traffic events in a surveillance scenario, including the detection of both vehicle actions and traffic collisions. Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available. However, in real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible (e.g. for traffic collision detection). Moreover, the conventional 2D representation of surveillance views is easily affected by occlusions and different camera views in nature. To deal with the aforementioned problems, in this paper, we propose a training-free monocular 3D event detection system for traffic surveillance. Our system firstly projects the vehicles into the 3D Euclidean space and estimates their kinematic states. Then we develop multiple simple yet effective ways to identify the events based on the kinematic patterns, which need no further training. Consequently, our system is robust to the occlusions and the viewpoint changes. Exclusive experiments report the superior result of our method on large-scale real-world surveillance datasets, which validates the effectiveness of our proposed system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源