论文标题
圆锥定理和Chow协同学的消失
The cone theorem and the vanishing of Chow cohomology
论文作者
论文摘要
我们表明,用于$ {\ mathbba}^1-单位不变的逆逆函子的锥体定理意味着大量仿射品种的作战杂志共同体学环的积极部分消失了。我们还讨论了这种消失如何与有关在模棱两可的周期中代表GIT商的Chow共同体类别的许多问题。
We show that a cone theorem for ${\mathbbA}^1-homotopy invariant contravariant functors implies the vanishing of the positive degree part of the operational Chow cohomology rings of a large class of affine varieties. We also discuss how this vanishing relates to a number of questions about representing Chow cohomology classes of GIT quotients in terms of equivariant cycles.