论文标题
通过机器学习研究Lagrangian理论:玩具模型
Studying Lagrangian theories with machine learning: a toy model
论文作者
论文摘要
借助机器学习算法研究了拉格朗日理论背景下的病理的存在。使用经典力学框架中的一个示例,我们做出了概念证明,即可以使用机器学习的新物理理论的构建。具体而言,我们利用了完全连接的馈送神经网络结构,旨在区分``健康''和````健康''lagrangians'',而没有明确提取相关的运动方程。训练后,该网络被用作遗传算法概念的健身功能,并构建了新的健康拉格朗日人。这些新的Lagrangians不同于初始数据集中包含的Lagrangians。因此,在我们的方法中搜索具有许多预定义属性的拉格朗日人。这项工作中采用的框架可用于探索更复杂的物理理论,例如重力物理学的一般相对论的概括,或者在固态物理学中的结构,其中标准程序可能会很费力。
The existence or not of pathologies in the context of Lagrangian theory is studied with the aid of Machine Learning algorithms. Using an example in the framework of classical mechanics, we make a proof of concept, that the construction of new physical theories using machine learning is possible. Specifically, we utilize a fully-connected, feed-forward neural network architecture, aiming to discriminate between ``healthy'' and ``non-healthy'' Lagrangians, without explicitly extracting the relevant equations of motion. The network, after training, is used as a fitness function in the concept of a genetic algorithm and new healthy Lagrangians are constructed. These new Lagrangians are different from the Lagrangians contained in the initial data set. Hence, searching for Lagrangians possessing a number of pre-defined properties is significantly simplified within our approach. The framework employed in this work can be used to explore more complex physical theories, such as generalizations of General Relativity in gravitational physics, or constructions in solid state physics, in which the standard procedure can be laborious.