论文标题

部分可观测时空混沌系统的无模型预测

How $Not$ to Compute a Fourier Transform

论文作者

Grzesik, J. A.

论文摘要

我们重新审视了汉克尔功能的傅立叶变换,这在刀边衍射理论中非常重要。我们的方法直接基于底层贝塞尔方程,该方程将操纵接收到替代的二阶微分方程中,除了$ \ textIt {a priorii} $未知常数和第二个未投入的对数类型的解决方案外,其解决方案是其解决方案的确切解决方案。然后需要进行适度的分析以表现出具有适当值的常数,并清除对数伴奏。该分析的干预依赖于渐近和近距离功能行为的相互作用,促使我们有些具有讽刺意味的,轻度的警告,我们的否定$ \ textit {not} $在标题中。在总结部分中,我们表明,同一转换仍然更容易显示为对绿色功能$ \ textit {g} $满足的不均匀波方程的简单副产品本身与Hankel函数成正比。后一个讨论当然会陷入物理学家的argot,并在其r $ \ hat中{\ rm {o}} $ le sor hor事后想到,对任何独创性都没有任何要求。

We revisit the Fourier transform of a Hankel function, of considerable importance in the theory of knife edge diffraction. Our approach is based directly upon the underlying Bessel equation, which admits manipulation into an alternate second order differential equation, one of whose solutions is precisely the desired transform, apart from an $\textit{a priori}$ unknown constant, and a second, undesired solution of logarithmic type. A modest amount of analysis is then required to exhibit that constant as having its proper value, and to purge the logarithmic accompaniment. The intervention of this analysis, which relies upon an interplay of asymptotic and close-in functional behaviors, prompts our somewhat ironic, mildly puckish caveat, our negation $\textit{not}$ in the title. In a concluding section we show that this same transform is still more readily exhibited as an easy byproduct of the inhomogeneous wave equation in two dimensions satisfied by the Green's function $\textit{G}$, itself proportional to a Hankel function. This latter discussion lapses of course into the argot of physicists and, in its r$\hat{\rm{o}}$le of a mere afterthought, makes no claim whatsoever to any originality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源