论文标题
3+1d中的TQFT,对称性破坏和有限规理论
TQFT, Symmetry Breaking, and Finite Gauge Theory in 3+1D
论文作者
论文摘要
我们在3+1D中得出了2组规格理论的规范形式,这表明它们要么等于Dijkgraaf-witten理论,要么与所谓的Lan-Wen的所谓“ EF1”拓扑顺序。根据该分类,最近从约翰逊 - 弗雷德(Johnson-Freyd)的不同角度提出了争论,这相当于所有3+1D TQFT中的一大级别。我们使用这种规范形式来计算2组规格理论的所有可能异常,这些异常可能不会自发对称性破裂,从而提供了最近对Córdova-Ohmori的对称性实现无差异的约束,并发现了一些可能的新例子。另一方面,如果异常与TQFT匹配,我们尝试提供最简单的TQFT。例如,由于涉及时间逆转的异常,$ \ mathbb {z} _2 $ gauge理论几乎总是有效。
We derive a canonical form for 2-group gauge theory in 3+1D which shows they are either equivalent to Dijkgraaf-Witten theory or to the so-called "EF1" topological order of Lan-Wen. According to that classification, recently argued from a different point of view by Johnson-Freyd, this amounts to a very large class of all 3+1D TQFTs. We use this canonical form to compute all possible anomalies of 2-group gauge theory which may occur without spontaneous symmetry breaking, providing a converse of the recent symmetry-enforced-gaplessness constraints of Córdova-Ohmori and also uncovering some possible new examples. On the other hand, in cases where the anomaly is matched by a TQFT, we try to provide the simplest possible such TQFT. For example, with anomalies involving time reversal, $\mathbb{Z}_2$ gauge theory almost always works.