论文标题

用于去耦MRI图像质量源的异质分歧不确定性模型

A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI Image Quality

论文作者

Shaw, Richard, Sudre, Carole H., Ourselin, Sebastien, Cardoso, M. Jorge

论文摘要

医学图像的质量控制(QC)对于确保可以成功执行诸如分割之类的下游分析至关重要。目前,QC在大量时间和运营商成本上主要是视觉上执行的。我们的目标是通过制定一个概率网络来自动化该过程,该网络通过异方差噪声模型来估算不确定性,从而提供了直接从数据中直接学习的任务特定图像质量的代理度量。通过使用不同类型的模拟K空间人工制品来增强训练数据,我们提出了一种基于学生教师框架的新型CNN体系结构,以完全自我自欺欺人的方式将与不同的K空间增强相关的不确定性源。这使我们能够预测不同类型的数据降解的单独不确定性数量。虽然不确定性措施反映了图像伪像的存在和严重性,但由于数据质量,网络还提供了分割预测。我们展示了经过模拟人工制品训练的模型,为现实世界图像提供了不确定性的信息衡量标准,我们验证了人类比例确定的有问题图像的不确定性预测。

Quality control (QC) of medical images is essential to ensure that downstream analyses such as segmentation can be performed successfully. Currently, QC is predominantly performed visually at significant time and operator cost. We aim to automate the process by formulating a probabilistic network that estimates uncertainty through a heteroscedastic noise model, hence providing a proxy measure of task-specific image quality that is learnt directly from the data. By augmenting the training data with different types of simulated k-space artefacts, we propose a novel cascading CNN architecture based on a student-teacher framework to decouple sources of uncertainty related to different k-space augmentations in an entirely self-supervised manner. This enables us to predict separate uncertainty quantities for the different types of data degradation. While the uncertainty measures reflect the presence and severity of image artefacts, the network also provides the segmentation predictions given the quality of the data. We show models trained with simulated artefacts provide informative measures of uncertainty on real-world images and we validate our uncertainty predictions on problematic images identified by human-raters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源