论文标题
局部质量保存二次速度,线性压力元件
A locally mass conserving quadratic velocity, linear pressure element
论文作者
论文摘要
通过补充泰勒 - 霍德元件的压力空间,产生了满足每个元素连续性的三角元素。使斑块参数的新扩展以证明稳定性,该元素在全球范围内稳定,并在各种三角形网格上给出最佳的收敛速率。该理论结果在附录中的讨论中扩展了,显示了如何在所有网格上获得最佳收敛速率。提出了两个例子,一个说明了收敛速率,另一个说明了与泰勒 - 霍德元素的困难,这是由此处介绍的元素克服的。
By supplementing the pressure space for the Taylor-Hood element a triangular element that satisfies continuity over each element is produced. Making a novel extension of the patch argument to prove stability, this element is shown to be globally stable and give optimal rates of convergence on a wide range of triangular grids. This theoretical result is extended in the discussion given in the appendix, showing how optimal convergence rates can be obtained on all grids. Two examples are presented, one illustrating the convergence rates and the other illustrating difficulties with the Taylor-Hood element which are overcome by the element presented here.