论文标题

深入推论学习感知和计划

Learning Perception and Planning with Deep Active Inference

论文作者

Çatal, Ozan, Verbelen, Tim, Nauta, Johannes, De Boom, Cedric, Dhoedt, Bart

论文摘要

主动推断是大脑的过程理论,该理论指出所有生物体都推断作用以最大程度地减少其(预期的)自由能。但是,当前的实验仅限于预定义的,通常是离散的状态空间。在本文中,我们利用最新的深度学习进步来学习状态空间,并近似必要的概率分布以进行主动推断。

Active inference is a process theory of the brain that states that all living organisms infer actions in order to minimize their (expected) free energy. However, current experiments are limited to predefined, often discrete, state spaces. In this paper we use recent advances in deep learning to learn the state space and approximate the necessary probability distributions to engage in active inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源