论文标题
基于密度功能性理论的基础误差校正强度相关的分子系统
A basis-set error correction based on density-functional theory for strongly correlated molecular systems
论文作者
论文摘要
我们扩展到密切相关的分子系统,基于密度功能理论(DFT)的最近引入的基础不完整校正[E. Giner等人,J。Chem。物理。 149,194301(2018)]。此基础设定校正依赖于在有限的基集中的波函数计算和范围分隔的DFT(RSDFT)之间的映射,这是通过定义与有限的电子库仑相互作用的有效的非发散相互作用的定义。这使得使用RSDFT型互补密度函数能够在此有限基集中恢复缺少短距离相关效应的主要部分。为了研究弱和强相关方案,我们考虑H10,N2,O2和F2分子的势能曲线,直至分离极限,我们探索了符合两个关键特性的互补功能的各种近似值:Spin-Multiplet demerations(即,对旋转型的能量独立性,对旋转型的独立性)和Spin PostiveptivePtuction Szs and Spine PostiveptionsS sz and szz and offeripartion colecules。具体而言,我们研究了该功能对不同类型的在顶部对密度和自旋极化的依赖性。这项研究的关键结果是,明确依赖于顶对对密度,使人们可以完全消除对自旋极化的任何形式的依赖性,而无需任何明显的准确性损失。从数量上讲,我们表明,对于此处研究的大多数系统,基础设定校正具有三重ZETA质量基集的雾化能量的化学精度。同样,当前基础不完整校正提供了沿整个内部距离范围的平滑势能曲线。
We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the electron-electron Coulomb interaction projected in the finite basis set. This enables the use of RSDFT-type complementary density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis set. To study both weak and strong correlation regimes we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy (i.e., independence of the energy with respect to the spin projection Sz) and size consistency. Specifically, we investigate the dependence of the functional on different types of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-zeta quality basis sets for most of the systems studied here. Also, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of internuclear distances.