论文标题
量子多体物理学具有超速极性分子:纳米结构的潜在障碍和相互作用
Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured Potential Barriers and Interactions
论文作者
论文摘要
我们设计了偶极量子多体汉密尔顿人,这将促进在极性分子获得的当前实验条件下实现外来量子相。主要思想是在数十纳米的空间尺度上调节单体电势障碍和两体偶性相互作用,以强烈增强能量尺度,因此,放宽了温度的要求,以观察工程多体系统的新量子阶段。我们考虑并比较两种方法。首先,纳米级屏障是通过利用光学非线性的常驻波光光场产生的。在第二个,静态电场梯度与微波敷料结合使用,用于在诱导的电偶极矩上编写纳米结构的空间图案,从而在偶极相互作用上进行偶极相互作用。我们研究了这些构型中分子的层间和界面结合状态的形成,并为当前实验设置提供了结合能和预期损失的详细估计。
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases under current experimental conditions achieved for polar molecules. The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers to strongly enhance energy scales and, therefore, relax temperature requirements for observing new quantum phases of engineered many-body systems. We consider and compare two approaches. In the first, nanoscale barriers are generated with standing wave optical light fields exploiting optical nonlinearities. In the second, static electric field gradients in combination with microwave dressing are used to write nanostructured spatial patterns on the induced electric dipole moments, and thus dipolar interactions. We study the formation of inter-layer and interface bound states of molecules in these configurations, and provide detailed estimates for binding energies and expected losses for present experimental setups.