论文标题
从其出生云的密度分布的prestellar核的统计质量功能
Statistical mass function of prestellar cores from the density distribution of their natal clouds
论文作者
论文摘要
在分子云中观察到的团块的质量功能提出了有趣的理论问题,尤其是在与恒星初始质量功能的关系中。我们提出了一个统计模型的Prestellar核心(CMF)的质量功能,该模型是在其演变给定阶段在自我磨碎的等温云中形成的。后者的特征是质量密度概率分布函数($ρ$ -PDF),该功能是带有坡度$ Q $的幂律。根据PDF斜率将MC的种类分为合奏,每个集合都由单个球形云表示。核心被认为是分形云的典型自相似结构的元素,并通过填充每个云外壳的球形对象进行建模。我们的模型假设大小,质量和密度之间的关系。在他们中,核心质量密度关系$ρ\ propto m^x $在其中$ x = 1/(1+q)$。我们发现$ q $决定了核心崩溃的阈值密度的存在或不存在。派生的总CMF是斜率$ -1 $的电源定律,而重力不稳定的内核的CMF具有斜率$(-1 + X/2)$,可与恒星初始质量功能的高质量部分和观测CMF的高质量部分相媲美。
The mass function of clumps observed in molecular clouds raises interesting theoretical issues, especially in its relation to the stellar initial mass function. We propose a statistical model of the mass function of prestellar cores (CMF), formed in self-gravitating isothermal clouds at a given stage of their evolution. The latter is characterized by the mass-density probability distribution function ($ρ$-PDF), which is a power-law with slope $q$. The variety of MCs is divided in ensembles according to the PDF slope and each ensemble is represented by a single spherical cloud. The cores are considered as elements of self-similar structure typical for fractal clouds and are modeled by spherical objects populating each cloud shell. Our model assumes relations between size, mass and density of the statistical cores. Out of them a core mass-density relationship $ρ\propto m^x$ is derived where $x=1/(1+q)$. We found that $q$ determines the existence or non-existence of a threshold density for core collapse. The derived general CMF is a power law of slope $-1$ while the CMF of gravitationally unstable cores has a slope $(-1 + x/2)$, comparable with the slopes of the high-mass part of the stellar initial mass function and of observational CMFs.