论文标题
异常的冰冻时间
Anomalous Ising freezing times
论文作者
论文摘要
我们测量了从超临界初始条件中淬灭的方格晶格伊斯林铁磁体的松弛时间。我们揭示了与“冷冻”两条条状态的放松相关的异常且看似被忽视的时间表。虽然与$ \ sim l^ν$的幂定律接近,但我们认为这个时间表实际上是$ \ sim l^{2} \ ln l $,其中l系统的线性维度。我们通过使用复制两条条状态的较晚排序的合成初始条件来揭示这种缩放形式背后的机制,然后以启发性解释。
We measure the relaxation time of a square lattice Ising ferromagnet that is quenched to zero-temperature from supercritical initial conditions. We reveal an anomalous and seemingly overlooked timescale associated with the relaxation to "frozen" two-stripe states. While close to a power law of the form $\sim L^ν$ , we argue this timescale actually grows as $\sim L^{2}\ln L$, with L the linear dimension of the system. We uncover the mechanism behind this scaling form by using a synthetic initial condition that replicates the late time ordering of two-stripe states, and subsequently explain it heuristically.