论文标题
nqudit相关性的可分离性不平等比本地现实不平等高指数强
Separability inequalities on N-qudit correlations exponentially stronger than local reality inequalities
论文作者
论文摘要
我在任意纯或混合$ n $ qudit状态下在$ d^n $二维状态空间中提出了可观察到的钟相关性的可分离性不平等。我发现州(如果$ d> 3 $)的状态(包括最大纠结状态,违反这些不平等的$ 2^{n-1} $;当地现实的铃铛不等式要弱得多,其最大违规是由$ 2^{(n-1)/2} $的因子。可分离性不平等允许仅使用测量的相关性测试未知状态的纠缠。
I derive separability inequalities for Bell correlations of observables in arbitrary pure or mixed $N$ Qudit states in $D^N$-dimensional state space. I find states (a continuum of states if $D>3$) including maximally entangled states which violate these inequalities by a factor $2^{N-1}$ ; local reality Bell inequalities are much weaker, their maximum violation being by a factor $2^{(N-1)/2}$. The separability inequalities allow tests of entanglement of unknown states using only the measured correlations .