论文标题

在全五环和部分六环的重新归一化组优化扰动下,手性冷凝物和光谱密度优化

Chiral Condensate and Spectral Density at full five-loop and partial six-loop orders of Renormalization Group Optimized Perturbation

论文作者

Kneur, Jean-Loic, Neveu, André

论文摘要

我们使用我们的重新分配组优化扰动(RGOPT)方法,重新考虑了我们以前对手性夸克冷凝物$ \ langle \ bar q q \ rangle $的确定。得益于最近可用的{\ em完整}五环QCD RG系数以及其他一些相关的四循环结果,我们可以将计算准确地扩展到$ n^4lo $(五环)RGOPT,部分地将$ n^5lo $(六环)扩展到了五个属性的五个属性中,可以完全定义所有六层属性。 RGOPT结果总体上显示出非常良好的稳定性和收敛性,主要给出RG不变的冷凝物,$ \ langle \ bar Q q q \ w {1/3} {1/3} _ {rgi}(n_f = 0)(n_f = 0) q \ rangle^{1/3} _ {rgi}(n_f = 2)= - (0.781 _ { - 0.009}^{+0.019})\barλ_2$,美元 - (0.751 _ { - 。010}^{+0.019})\barλ_3$,其中$ \barλ_{n_f} $是\ $ n_f $ quark风格的基本QCD量表{MS}方案中的基本量表,我们的范围是我们相当保守的估计估计的,这是我们相当保守的。这将{\ it e.g。}引导到$ \ langle \ bar q q \ rangle^{1/3} _ {n_f = 3}(2 \,{\ rm gev})= - (273^{+7} _ {+7} _ { - { - 4} \ pm 13)$ mev,使用最新的$ \ $ \ $ \ $ \ $ \ $ \ coveling。我们将结果与其他一些最近的决定进行了比较。作为我们分析的副产品,我们还提供了扰动QCD光谱密度的完整的五环和部分六环表达式,这可能对其他目的有用。

We reconsider our former determination of the chiral quark condensate $\langle \bar q q \rangle$ from the related QCD spectral density of the Euclidean Dirac operator, using our Renormalization Group Optimized Perturbation (RGOPT) approach. Thanks to the recently available {\em complete} five-loop QCD RG coefficients, and some other related four-loop results, we can extend our calculations exactly to $N^4LO$ (five-loops) RGOPT, and partially to $N^5LO$ (six-loops), the latter within a well-defined approximation accounting for all six-loop contents exactly predictable from five-loops RG properties. The RGOPT results overall show a very good stability and convergence, giving primarily the RG invariant condensate, $\langle \bar q q\rangle^{1/3}_{RGI}(n_f=0) = -(0.840_{-0.016}^{+0.020}) \barΛ_0 $, $\langle\bar q q\rangle^{1/3}_{RGI}(n_f=2) = -(0.781_{-0.009}^{+0.019}) \barΛ_2 $, $\langle\bar q q\rangle^{1/3}_{RGI}(n_f=3) = -(0.751_{-.010}^{+0.019}) \barΛ_3 $, where $\barΛ_{n_f}$ is the basic QCD scale in the \overline{MS} scheme for $n_f$ quark flavors, and the range spanned is our rather conservative estimated theoretical error. This leads {\it e.g.} to $ \langle\bar q q\rangle^{1/3}_{n_f=3}(2\, {\rm GeV}) = -(273^{+7}_{-4}\pm 13)$ MeV, using the latest $\barΛ_3$ values giving the second uncertainties. We compare our results with some other recent determinations. As a by-product of our analysis we also provide complete five-loop and partial six-loop expressions of the perturbative QCD spectral density, that may be useful for other purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源