论文标题

线性编程承包商使用RDM算术进行间隔分布状态估算

Linear Programming Contractor for Interval Distribution State Estimation Using RDM Arithmetic

论文作者

Ngo, VietCuong, Wu, Wenchuan

论文摘要

分布网络的状态估计(SE)在很大程度上依赖于引入重大错误的伪测量,因为实时测量不足。间隔SE模型定期使用,其中系统状态的真实值应该在估计的范围内。但是,传统的间隔SE算法不能以不同的约束术语来考虑相同的间隔变量的相关性,从而导致过度保守的估计结果。在本文中,我们提出了一种线性编程(LP)承包商算法,该算法使用相对距离度量(RDM)间隔操作来解决此问题。在提出的模型中,假定测量误差被认为是在给定集合中的,从而将状态变量转换为RDM变量。在这种情况下,SE模型是一个非凸模型,无法保证解决方案的信誉。因此,使用平均值定理将模型中的每个非线性测量方程式转换为双不平等方程。最终将SE模型重新归类为线性编程承包商,迭代地缩小了系统状态变量的上限和下限。 IEEE三相分布网络上的数值测试表明,所提出的方法的表现优于常规间隔限制的传播,修改的Krawczyk-operator和基于优化的间隔SE方法。

State estimation (SE) of distribution networks heavily relies on pseudo measurements that introduce significant errors, since real-time measurements are insufficient. Interval SE models are regularly used, where true values of system states are supposed to be within the estimated ranges. However, conventional interval SE algorithms cannot consider the correlations of same interval variables in different terms of constraints, which results in overly conservative estimation results. In this paper, we propose a Linear Programming (LP) Contractor algorithm that uses a relative distance measure (RDM) interval operation to solve this problem. In the proposed model, measurement errors are assumed to be bounded into given sets, thus converting the state variables to RDM variables. In this case, the SE model is a non-convex model, and the solution credibility cannot be guaranteed. Therefore, each nonlinear measurement equation in the model is transformed into dual inequality linear equations using the mean value theorem. The SE model is finally reformulated as a linear programming contractor that iteratively narrows the upper and lower bounds of the system state variables. Numerical tests on IEEE three-phase distribution networks show that the proposed method outperforms the conventional interval-constrained propagation, modified Krawczyk-operator and optimization based interval SE methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源