论文标题
探测量子退火器中拓扑缺陷形成的普遍性:kibble-zurek机构及其他
Probing the Universality of Topological Defect Formation in a Quantum Annealer: Kibble-Zurek Mechanism and Beyond
论文作者
论文摘要
通过量子相过渡驱动的系统中产生的拓扑缺陷的数量表现出随着驱动时间的范围。这种通用缩放定律是kibble-zurek机制(KZM)的关键预测,并使用基于硬件的量子模拟器对其进行测试是量子信息科学的令人垂涎的目标。在这里,我们使用量子退火提供了这样的测试。具体而言,我们通过在两个不同的D-Wave量子退火设备上的一维横向场ISING模型报告了拓扑缺陷形成的广泛实验测试。我们发现,量子模拟器的结果确实可以通过KZM来解释带有相叉误差的开放系统量子动力学,而某些定量偏差与该理论可能是由诸如随机控制误差和瞬态效应等因素引起的理论。此外,我们通过识别扭结数量及其衰减的分布和累积物中的普遍性来探测KZM以外的物理学,并再次发现与量子模拟器结果一致。这意味着假定与环境隔离的广义KZM理论的理论预测适用于开放系统。我们通过广泛的数值计算来支持这一结果。为了检查这些结果的替代性解释是否可以解释,我们使用了自旋矢量蒙特卡洛模型,这是对D-Wave设备的候选经典描述。我们发现,与来自D波退火设备的实验数据的一致性对于KZM(一种量子理论)比对于经典的自旋矢量蒙特卡洛模型更好,因此有利于对设备的量子描述。我们的工作提供了开放量子系统中量子临界动力学的实验测试,并为量子模拟实验中的新方向铺平了道路。
The number of topological defects created in a system driven through a quantum phase transition exhibits a power-law scaling with the driving time. This universal scaling law is the key prediction of the Kibble-Zurek mechanism (KZM), and testing it using a hardware-based quantum simulator is a coveted goal of quantum information science. Here we provide such a test using quantum annealing. Specifically, we report on extensive experimental tests of topological defect formation via the one-dimensional transverse-field Ising model on two different D-Wave quantum annealing devices. We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors, with certain quantitative deviations from the theory likely caused by factors such as random control errors and transient effects. In addition, we probe physics beyond the KZM by identifying signatures of universality in the distribution and cumulants of the number of kinks and their decay, and again find agreement with the quantum simulator results. This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system. We support this result by extensive numerical computations. To check whether an alternative, classical interpretation of these results is possible, we used the spin-vector Monte Carlo model, a candidate classical description of the D-Wave device. We find that the degree of agreement with the experimental data from the D-Wave annealing devices is better for the KZM, a quantum theory, than for the classical spin-vector Monte Carlo model, thus favoring a quantum description of the device. Our work provides an experimental test of quantum critical dynamics in an open quantum system, and paves the way to new directions in quantum simulation experiments.