论文标题

新颖的拉格朗日层次结构,普遍的变分颂和常规和嵌入式孤立波的家族

Novel Lagrangian Hierarchies, Generalized Variational ODE's and Families of Regular and Embedded Solitary Waves

论文作者

Alfonso-Rodriguez, Ranses, Choudhury, S. Roy

论文摘要

第二级拉格朗日人的层次结构,每个层次仅由选择领先术语和一些系数剩余的一部分决定。它们所包含的自由系数满足了目前以拉格朗日和变异配方而闻名的最通用的差异几何标准,并分别通过解决标量四阶频率变化的整个逆问题来得出。但是,我们的拉格朗日人具有更大的自由度,因为我们的存在条件是拉格朗日人的个体系数。特别是,此处得出的拉格朗日类别具有四个任意或自由功能,包括允许在由此产生的变化ODE中的领先系数是任意的,并且具有基于较早的特殊情况的较早的一般标准的模型。对于领先系数的不同选择,所得的变分方程也可以代表各种非线性进化方程的行进波,其中一些恢复已知的物理模型。对于适当的参数状态,对于这些广义变异ODE的一些定期和嵌入式孤立波的家族是在适当的参数状态下得出的,嵌入的孤子仅出现在存在参数空间的一部分的孤立曲线上。未来的工作将涉及高级拉格朗日人,由此产生的运动方程及其孤立的波浪解决方案。

Hierarchies of Lagrangians of degree two, each only partly determined by the choice of leading terms and with some coefficients remaining free, are considered. The free coefficients they contain satisfy the most general differential geometric criterion currently known for the existence of a Lagrangian and variational formulation, and derived by solution of the full inverse problem of the calculus of variations for scalar fourth-order ODEs respectively. However, our Lagrangians have significantly greater freedom since our existence conditions are for individual coefficients in the Lagrangian. In particular, the classes of Lagrangians derived here have four arbitrary or free functions, including allowing the leading coefficient in the resulting variational ODEs to be arbitrary, and with models based on the earlier general criteria for a variational representation being special cases. For different choices of leading coefficients, the resulting variational equations could also represent traveling waves of various nonlinear evolution equations, some of which recover known physical models. Families of regular and embedded solitary waves are derived for some of these generalized variational ODEs in appropriate parameter regimes, with the embedded solitons occurring only on isolated curves in the part of parameter space where they exist. Future work will involve higher order Lagrangians, the resulting equations of motion, and their solitary wave solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源