论文标题

离散玻璃球形平均值的新界限

New bounds for discrete lacunary spherical averages

论文作者

Anderson, Theresa C., Madrid, Jose

论文摘要

我们表明,对于所有$ p> \ frac {d+1} {d-1} $,离散的球形最大函数在$ l^p(\ mathbb {z}^d)$上限制。我们的范围是在维度4中的新范围,在那里看来很少以一般的lacunary半径而闻名。我们的技术遵循Kesler-Lacey-Mena的技术,使用Kloosterman的精炼来改善多个地方的估计,从而导致维度4的总体改善。

We show that the discrete lacunary spherical maximal function is bounded on $l^p(\mathbb{Z}^d)$ for all $p >\frac{d+1}{d-1}$. Our range is new in dimension 4, where it appears that little was previously known for general lacunary radii. Our technique follows that of Kesler-Lacey-Mena, using the Kloosterman refinement to improve the estimates in several places, which leads to an overall improvement in dimension 4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源