论文标题

分段平面指标和量子重力

Piecewise Flat Metrics and Quantum Gravity

论文作者

Mikovic, Aleksandar

论文摘要

我们引入了与光滑4个manifold的重新三角剖分相关的物理分段线性度量。我们描述了在欧几里得和Minkowski签名的情况下相应几何形状的基本特性。在Minkowski案例中,我们描述了Regge动作以及如何定义休闲三角剖分的相应路径积分。我们还讨论了与Friedman-Lemaitre-Robertson-Walker宇宙学模型相关的三角剖分的Regge Path组成部分,并简要研究了相应的波形,即Hartle-Hawking和Vilenkin波函数。

We introduce a physical piecewise linear metric associated to a Regge triangulation of a smooth 4-manifold. We describe the basic properties of the corresponding geometry in the cases of the Euclidean and the Minkowski signature. In the Minkowski case, we describe the Regge action and how to define the corresponding path integral for the casual triangulations. We also discus the Regge path integral for a triangulation associated to the Friedman-Lemaitre-Robertson-Walker cosmological model and briefly study the corresponding wavefunctions, namely the Hartle-Hawking and the Vilenkin wavefunction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源