论文标题

原位学习通过马尔可夫链蒙特卡洛采样来利用内在的电阻内存变异性

In-situ learning harnessing intrinsic resistive memory variability through Markov Chain Monte Carlo Sampling

论文作者

Dalgaty, Thomas, Castellani, Niccolo, Querlioz, Damien, Vianello, Elisa

论文摘要

电阻内存技术承诺将成为解锁下一代智能内存计算系统的关键组成部分,这些计算系统可以在边缘进行本地行动和学习。但是,当前的内存机器学习方法通​​常集中在模型和算法的实现上,这些模型和算法无法与电阻内存的真实物理属性进行调和。因此,这些属性,特别是周期到周期电导的可变性,被认为是需要缓解的非理想性。相比之下,我们通过选择更合适的机器学习模型和算法来拥抱这些属性。我们在制造的16,384个设备的制造阵列中实现了马尔可夫链蒙特卡洛采样算法,该阵列配置为贝叶斯机器学习模型。该算法是通过将设备作为随机变量从周期到周期电导变异性的角度利用为随机变量来实现的。我们通过实验训练记忆阵列,以执行说明性的监督学习任务以及恶性乳腺组织识别任务,其精度为96.3%。然后,使用在阵列级别测量上校准的电阻内存的行为模型,我们将相同的方法应用于Cartpole增强学习任务。在所有情况下,我们提出的方法都超过了基于软件的神经网络模型,使用等效数量的内存元素实现。此结果为新的路径中内存机器学习奠定了基础,与电阻性记忆技术的真实属性兼容,可以将局部学习能力带入智能边缘计算系统。

Resistive memory technologies promise to be a key component in unlocking the next generation of intelligent in-memory computing systems that can act and learn locally at the edge. However, current approaches to in-memory machine learning focus often on the implementation of models and algorithms which cannot be reconciled with the true, physical properties of resistive memory. Consequently, these properties, in particular cycle-to-cycle conductance variability, are considered as non-idealities that require mitigation. Here by contrast, we embrace these properties by selecting a more appropriate machine learning model and algorithm. We implement a Markov Chain Monte Carlo sampling algorithm within a fabricated array of 16,384 devices, configured as a Bayesian machine learning model. The algorithm is realised in-situ, by exploiting the devices as random variables from the perspective of their cycle-to-cycle conductance variability. We train experimentally the memory array to perform an illustrative supervised learning task as well as a malignant breast tissue recognition task, achieving an accuracy of 96.3%. Then, using a behavioural model of resistive memory calibrated on array level measurements, we apply the same approach to the Cartpole reinforcement learning task. In all cases our proposed approach outperformed software-based neural network models realised using an equivalent number of memory elements. This result lays a foundation for a new path in-memory machine learning, compatible with the true properties of resistive memory technologies, that can bring localised learning capabilities to intelligent edge computing systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源