论文标题

2018机器人场景细分挑战

2018 Robotic Scene Segmentation Challenge

论文作者

Allan, Max, Kondo, Satoshi, Bodenstedt, Sebastian, Leger, Stefan, Kadkhodamohammadi, Rahim, Luengo, Imanol, Fuentes, Felix, Flouty, Evangello, Mohammed, Ahmed, Pedersen, Marius, Kori, Avinash, Alex, Varghese, Krishnamurthi, Ganapathy, Rauber, David, Mendel, Robert, Palm, Christoph, Bano, Sophia, Saibro, Guinther, Shih, Chi-Sheng, Chiang, Hsun-An, Zhuang, Juntang, Yang, Junlin, Iglovikov, Vladimir, Dobrenkii, Anton, Reddiboina, Madhu, Reddy, Anubhav, Liu, Xingtong, Gao, Cong, Unberath, Mathias, Kim, Myeonghyeon, Kim, Chanho, Kim, Chaewon, Kim, Hyejin, Lee, Gyeongmin, Ullah, Ihsan, Luna, Miguel, Park, Sang Hyun, Azizian, Mahdi, Stoyanov, Danail, Maier-Hein, Lena, Speidel, Stefanie

论文摘要

2015年,我们在慕尼黑的Miccai的Endovis研讨会上开始使用前体组织的内窥镜图像,并从机器人前进运动学和仪器CAD模型中自动产生注释。但是,有限的背景变化和简单的运动使数据集在学习哪些技术适合于实际手术中的分割方面变得无知。 2017年,在魁北克的同一研讨会上,我们介绍了机器人仪器分割数据集,其中10个团队参加了挑战,以执行二进制,表达零件和DA VINCI仪器的类型分割。这项挑战包括逼真的仪器运动和更复杂的猪组织作为背景,并通过对U-NET和其他流行的CNN体​​系结构进行了广泛解决。在2018年,我们通过向分段类引入一组解剖对象和医疗设备来增加复杂性。为了避免挑战过度调整挑战,我们继续使用猪数据,这比人体组织非常简单,因为缺乏脂肪组织阻塞了许多器官。

In 2015 we began a sub-challenge at the EndoVis workshop at MICCAI in Munich using endoscope images of ex-vivo tissue with automatically generated annotations from robot forward kinematics and instrument CAD models. However, the limited background variation and simple motion rendered the dataset uninformative in learning about which techniques would be suitable for segmentation in real surgery. In 2017, at the same workshop in Quebec we introduced the robotic instrument segmentation dataset with 10 teams participating in the challenge to perform binary, articulating parts and type segmentation of da Vinci instruments. This challenge included realistic instrument motion and more complex porcine tissue as background and was widely addressed with modifications on U-Nets and other popular CNN architectures. In 2018 we added to the complexity by introducing a set of anatomical objects and medical devices to the segmented classes. To avoid over-complicating the challenge, we continued with porcine data which is dramatically simpler than human tissue due to the lack of fatty tissue occluding many organs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源