论文标题

用于构建最佳二进制AIFV- $ 2 $代码的多项式时间算法

Polynomial Time Algorithms for Constructing Optimal Binary AIFV-$2$ Codes

论文作者

Golin, Mordecai, Harb, Elfarouk

论文摘要

Huffman代码是最佳的瞬时固定到变量(FV)代码,其中每个源符号只能由一个代码字编码。放松这些约束允许构建更好的FV代码。更具体地说,最近的工作表明AIFV- $ M $代码可以击败Huffman编码。 AIFV- $ M $代码构建AM $ M $ M $ M $ - 代码之间的不同编码树,几乎是瞬时的(AI)。这意味着解码单词可能需要延迟有限数量的位。 当前用于构建最佳AIFV- $ M $代码的算法是迭代过程,逐渐构建了代码树的“更好集”。事实证明,这些过程有限地收敛到最佳代码,但没有关于收敛速率的界限。 本文得出了对二进制AIFV-$ 2 $代码空间的几何解释,从而允许开发第一个多项式时间内的迭代过程,用于构建最佳的AIFV代码。 我们首先表明一个简单的二进制搜索过程可以替换当前的迭代过程,以构建最佳的二进制AIFV- $ 2 $代码。然后,我们将如何将问题描述为具有指数次数约束数量的线性编程,而多项式时间可分离性甲骨文。这允许使用Grötschel,Lovász和Schrijver椭圆形方法以多项式数量的步骤解决该问题。尽管更复杂,但第二种方法有可能导致多项式时间算法构建一般$ m $的最佳AIFV-$ m $代码。

Huffman Codes are optimal Instantaneous Fixed-to-Variable (FV) codes in which every source symbol can only be encoded by one codeword. Relaxing these constraints permits constructing better FV codes. More specifically, recent work has shown that AIFV-$m$ codes can beat Huffman coding. AIFV-$m$ codes construct am $m$-tuple of different coding trees between which the code alternates and are only almost instantaneous (AI). This means that decoding a word might require a delay of a finite number of bits. Current algorithms for constructing optimal AIFV-$m$ codes are iterative processes that construct progressively "better sets" of code trees. The processes have been proven to finitely converge to the optimal code but with no known bounds on the convergence rate. This paper derives a geometric interpretation of the space of binary AIFV-$2$ codes, permitting the development of the first polynomially time-bounded iterative procedures for constructing optimal AIFV codes. We first show that a simple binary search procedure can replace the current iterative process to construct optimal binary AIFV-$2$ codes. We then describe how to frame the problem as a linear programming with an exponential number of constraints but a polynomial-time separability oracle. This permits using the Grötschel, Lovász and Schrijver ellipsoid method to solve the problem in a polynomial number of steps. While more complicated, this second method has the potential to lead to a polynomial time algorithm to construct optimal AIFV-$m$ codes for general $m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源