论文标题

关于具有相关设备的物联网系统中信息时代

On the Age of Information in Internet of Things Systems with Correlated Devices

论文作者

Zhou, Bo, Saad, Walid

论文摘要

在本文中,考虑了实时的物联网(IoT)监视系统,其中多个IoT设备必须及时将有关常见基础物理过程状态信息的状态信息传输到公共目的地。特别是,考虑了现实世界的物联网方案,其中需要在目的地进行多个(部分)观察到的状态信息,以便可以正确重新构造物理过程的实时状态。通过考虑到IoT设备上的相关状态信息,研究了IoT设备调度的问题,以共同最大程度地减少目的地的平均信息年龄(AOI)和物联网设备的平均能源成本。特别是考虑了两种类型的IoT设备:ITY-I设备的状态随机更新和II型设备的状态更新可以通过关联的采样成本生成,其状态更新可以生成。这个随机问题被提出为无限的地平线平均成本马尔可夫决策过程(MDP)。最佳的调度策略证明在目的地相对于AOI是基于阈值的,并且对于每个设备的通道条件,阈值是不侵入的。对于所有设备均为II的特殊情况,可以将原始MDP简化为具有较小状态和动作空间的MDP。最佳策略进一步证明具有相似的基于阈值的结构,并且该阈值在设备的能源成本函数上不受约束。仿真结果说明了最佳政策的结构,并显示了与近视基线政策相比,最佳政策的有效性。

In this paper, a real-time Internet of Things (IoT) monitoring system is considered in which multiple IoT devices must transmit timely updates on the status information of a common underlying physical process to a common destination. In particular, a real-world IoT scenario is considered in which multiple (partially) observed status information by different IoT devices are required at the destination, so that the real-time status of the physical process can be properly re-constructed. By taking into account such correlated status information at the IoT devices, the problem of IoT device scheduling is studied in order to jointly minimize the average age of information (AoI) at the destination and the average energy cost at the IoT devices. Particularly, two types of IoT devices are considered: Type-I devices whose status updates randomly arrive and type-II devices whose status updates can be generated-at-will with an associated sampling cost. This stochastic problem is formulated as an infinite horizon average cost Markov decision process (MDP). The optimal scheduling policy is shown to be threshold-based with respect to the AoI at the destination, and the threshold is non-increasing with the channel condition of each device. For a special case in which all devices are type-II, the original MDP can be reduced to an MDP with much smaller state and action spaces. The optimal policy is further shown to have a similar threshold-based structure and the threshold is non-decreasing with an energy cost function of the devices. Simulation results illustrate the structure of the optimal policy and show the effectiveness of the optimal policy compared with a myopic baseline policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源