论文标题

多个器官功能障碍综合征(MODS)的老年患者早期预测死亡率的早期预测的可解释的机器学习模型:多中心回顾性研究和交叉验证

Interpretable Machine Learning Model for Early Prediction of Mortality in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a Multicenter Retrospective Study and Cross Validation

论文作者

Liu, Xiaoli, Hu, Pan, Mao, Zhi, Kuo, Po-Chih, Li, Peiyao, Liu, Chao, Hu, Jie, Li, Deyu, Cao, Desen, Mark, Roger G., Celi, Leo Anthony, Zhang, Zhengbo, Zhou, Feihu

论文摘要

背景:MOD的老年患者的死亡风险很高,预后不良。当前评估MOD严重程度及其死亡率的当前评分系统的性能仍然不令人满意。这项研究旨在开发一个可解释且可推广的模型,用于对MOD的老年患者的早期死亡率预测。方法:模拟于III,EICU-CRD和PLAGH-S数据库用于模型生成和评估。我们使用Shapley添加性解释方法使用了极端的梯度增强模型来对患者的医院结果进行早期且可解释的预测。采用了三种类型的数据源组合和五个典型评估指数来开发可推广的模型。研究结果:可解释的模型通过使用MIMIC-III和EICU-CRD数据集开发出最佳性能,在Mimic-III,EICU-CRD和PLAGH-S数据集中分别验证了(与培训集没有重叠)。该模型在预测三个数据集验证的医院死亡率方面的表现为:AUC为0.858,灵敏度为0.834,特异性为0.705; AUC为0.849,灵敏度为0.763,特异性为0.784; AUC为0.838,灵敏度为0.882和特异性分别为0.691。该模型与基线模型与模拟III数据集验证之间的AUC比较表明该模型的表现出色。此外,该模型与常用临床评分之间的AUC比较表明,该模型的性能明显更好。解释:在本研究中开发的可解释的机器学习模型使用较大样本量的融合数据集建立了强大且可推广。该模型的表现优于基线模型和几个临床评分,用于早期预测老年ICU患者死亡率。该模型的解释性为临床医生提供了死亡风险特征的排名。

Background: Elderly patients with MODS have high risk of death and poor prognosis. The performance of current scoring systems assessing the severity of MODS and its mortality remains unsatisfactory. This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS. Methods: The MIMIC-III, eICU-CRD and PLAGH-S databases were employed for model generation and evaluation. We used the eXtreme Gradient Boosting model with the SHapley Additive exPlanations method to conduct early and interpretable predictions of patients' hospital outcome. Three types of data source combinations and five typical evaluation indexes were adopted to develop a generalizable model. Findings: The interpretable model, with optimal performance developed by using MIMIC-III and eICU-CRD datasets, was separately validated in MIMIC-III, eICU-CRD and PLAGH-S datasets (no overlapping with training set). The performances of the model in predicting hospital mortality as validated by the three datasets were: AUC of 0.858, sensitivity of 0.834 and specificity of 0.705; AUC of 0.849, sensitivity of 0.763 and specificity of 0.784; and AUC of 0.838, sensitivity of 0.882 and specificity of 0.691, respectively. Comparisons of AUC between this model and baseline models with MIMIC-III dataset validation showed superior performances of this model; In addition, comparisons in AUC between this model and commonly used clinical scores showed significantly better performance of this model. Interpretation: The interpretable machine learning model developed in this study using fused datasets with large sample sizes was robust and generalizable. This model outperformed the baseline models and several clinical scores for early prediction of mortality in elderly ICU patients. The interpretative nature of this model provided clinicians with the ranking of mortality risk features.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源