论文标题

对大维因子模型的网络辅助估计,并保证了收敛率提高

Network-Assisted Estimation for Large-dimensional Factor Model with Guaranteed Convergence Rate Improvement

论文作者

Yu, Long, He, Yong, Zhang, Xinsheng, Zhu, Ji

论文摘要

网络结构越来越流行,可以捕获大规模变量之间的内在关系。在本文中,当观察到个体之间的网络结构时,我们建议提高大维因子模型的估计准确性。为了充分发掘先前的网络信息,我们构建了两种不同的惩罚,以使因子负载正常并收缩特质错误。为惩罚优化问题提供了封闭式解决方案。理论结果表明,当个人之间的基础网络结构是正确的时,修改后的估计器达到更快的收敛速率和降低渐近平方误差。一个有趣的发现是,即使先验网络完全误导了,拟议的估计器的性能也不比常规的最新方法差。此外,为了促进实际应用,我们提出了一种数据驱动的方法来选择调整参数,这在计算上是有效的。我们还提供了一个经验标准来确定常见因素的数量。 S&P100每周返回数据集的模拟研究和应用令人信服地说明了新方法的优越性和适应性。

Network structure is growing popular for capturing the intrinsic relationship between large-scale variables. In the paper we propose to improve the estimation accuracy for large-dimensional factor model when a network structure between individuals is observed. To fully excavate the prior network information, we construct two different penalties to regularize the factor loadings and shrink the idiosyncratic errors. Closed-form solutions are provided for the penalized optimization problems. Theoretical results demonstrate that the modified estimators achieve faster convergence rates and lower asymptotic mean squared errors when the underlying network structure among individuals is correct. An interesting finding is that even if the priori network is totally misleading, the proposed estimators perform no worse than conventional state-of-art methods. Furthermore, to facilitate the practical application, we propose a data-driven approach to select the tuning parameters, which is computationally efficient. We also provide an empirical criterion to determine the number of common factors. Simulation studies and application to the S&P100 weekly return dataset convincingly illustrate the superiority and adaptivity of the new approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源