论文标题
分析解决方案,用于相位空间和Wigner函数中的总壁杆菌方程
Analytical Solution for Gross-Pitaevskii Equation in Phase Space and Wigner Function
论文作者
论文摘要
在这项工作中,我们研究了Galilei组的符号统一表示。结果,非线性schrödinger方程是在相空间中得出的。形式主义是基于星星产物的非交通性结构,并使用小组理论方法作为指导,在相空间中构建了物理一致的理论。状态由与Wigner函数相关的准概率幅度描述。通过这些结果,我们在相空间中求解了毛线杆菌方程,并获得了所考虑系统的Wigner函数。
In this work we study symplectic unitary representations for the Galilei group. As a consequence a Non-Linear Schrödinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physically consistent theory is constructed in phase space. The state is described by a quasi-probability amplitude that is in association with the Wigner function. With these results, we solve the Gross-Pitaevskii equation in phase space and obtained the Wigner function for the system considered.