论文标题

分析解决方案,用于相位空间和Wigner函数中的总壁杆菌方程

Analytical Solution for Gross-Pitaevskii Equation in Phase Space and Wigner Function

论文作者

Martins, A. X., Paiva, R. A. S., Petronilo, G., Luz, R. R., Ulhoa, S. C., Amorim, R. G. G., Filho, T. M. R.

论文摘要

在这项工作中,我们研究了Galilei组的符号统一表示。结果,非线性schrödinger方程是在相空间中得出的。形式主义是基于星星产物的非交通性结构,并使用小组理论方法作为指导,在相空间中构建了物理一致的理论。状态由与Wigner函数相关的准概率幅度描述。通过这些结果,我们在相空间中求解了毛线杆菌方程,并获得了所考虑系统的Wigner函数。

In this work we study symplectic unitary representations for the Galilei group. As a consequence a Non-Linear Schrödinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physically consistent theory is constructed in phase space. The state is described by a quasi-probability amplitude that is in association with the Wigner function. With these results, we solve the Gross-Pitaevskii equation in phase space and obtained the Wigner function for the system considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源