论文标题

具有高热稳定性的多金属传导冷却超导射频腔

Multi-metallic conduction cooled superconducting radio-frequency cavity with high thermal stability

论文作者

Ciovati, G., Cheng, G., Pudasaini, U., Rimmer, R.

论文摘要

超导射频腔通常用于应用和基础研究的现代粒子加速器中。这样的空腔通常由高纯度,大量的NB制成,并通过液态氦气浴在〜2 K的温度下冷却。使用液态氦冰箱的粒子加速器操作粒子加速器的尺寸,成本和复杂性使当前的空腔技术不利于在工业型加速器中使用。我们开发了一个由冷冻机导电的多金属1.495〜GHz椭圆形腔。腔体在内表面上有一个约2 $ $ m的厚度NB $ _3 $ _3 $ sn,暴露于RF场,沉积在〜3 mm厚的大块NB NB壳和一个散装的Cu外壳上,厚度为$ \ geqslant 5 $ mm的厚度$ \ geqslant,由电镀层沉积在外表面上。使用螺栓固定的Cu板1.27厘米厚用于将腔赤道热连接到Gifford-MCMAHON CRYOCOOLER的第二阶段,名义容量为4.2 K时为2W。最初在4.3 k的液体氦气中测试了腔液,并在4.3 k时进行了液体氦气测试,并达到了〜36 mt的峰值表面磁场,并达到了〜36 mt的质量因子,质量为$ 2 $ 2 \ $ 2 \ 2 $ \ tirs 10^9 $。由CryCooler冷却的腔体达到了〜29 mt的峰表面磁场,相当于加速梯度为6.5 mV/m,并且能够在腔内在腔内耗散1 h的连续波动,持续1 h,而无需任何热击穿。该结果代表了超导加速器腔技术的范式转变。

Superconducting radio-frequency cavities are commonly used in modern particle accelerators for applied and fundamental research. Such cavities are typically made of high-purity, bulk Nb and are cooled by a liquid helium bath at a temperature of ~2 K. The size, cost and complexity of operating a particle accelerator with a liquid helium refrigerator makes the current cavity technology not favorable for use in industrial-type accelerators. We developed a multi-metallic 1.495~GHz elliptical cavity conductively cooled by a cryocooler. The cavity has a ~2 $μ$m thick layer of Nb$_3$Sn on the inner surface, exposed to the rf field, deposited on a ~3 mm thick bulk Nb shell and a bulk Cu shell, of thickness $\geqslant 5$ mm deposited on the outer surface by electroplating. A bolt-on Cu plate 1.27 cm thick was used to thermally connect the cavity equator to the second stage of a Gifford-McMahon cryocooler with a nominal capacity of 2 W at 4.2 K. The cavity was tested initially in liquid helium at 4.3 K and reached a peak surface magnetic field of ~36 mT with a quality factor of $2\times 10^9$. The cavity cooled by the crycooler achieved a peak surface magnetic field of ~29 mT, equivalent to an accelerating gradient of 6.5 MV/m, and it was able to operate in continuous-wave with as high as 5 W dissipation in the cavity for 1 h without any thermal breakdown. This result represents a paradigm shift in the technology of superconducting accelerator cavities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源