论文标题

关于量子分类器的量子集合

On quantum ensembles of quantum classifiers

论文作者

Abbas, Amira, Schuld, Maria, Petruccione, Francesco

论文摘要

Quantum机器学习旨在利用量子计算机的潜在性质来增强机器学习技术。一个特定的框架使用叠加的量子属性来存储一组参数,从而创建了可以并行计算的量子分类器集合。这个想法源于经典的集合方法,在这些方法中,人们试图通过平均许多不同模型的结果来构建更强大的模型。在这项工作中,我们证明可以完全取消量子分类器的量子集合的特定实现,称为精度加权量子集合。另一方面,证明一般量子集合框架包含众所周知的Deutsch-Jozsa算法,该算法特别提供了量子加速,并为利用这一计算优势的有用量子集合创造了潜力。

Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques. A particular framework uses the quantum property of superposition to store sets of parameters, thereby creating an ensemble of quantum classifiers that may be computed in parallel. The idea stems from classical ensemble methods where one attempts to build a stronger model by averaging the results from many different models. In this work, we demonstrate that a specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised. On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup and creates the potential for a useful quantum ensemble to harness this computational advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源