论文标题

基于方面的学术搜索使用特定领域的KB

Aspect-based Academic Search using Domain-specific KB

论文作者

Upadhyay, Prajna, Bedathur, Srikanta, Chakraborty, Tanmoy, Ramanath, Maya

论文摘要

学术搜索引擎允许科学家探索与给定查询相关的相关工作。通常,用户还意识到检索相关文档的“方面”。在这种情况下,可以通过用描述该方面的术语扩展查询来使用现有的搜索引擎。但是,这种方法不能保证良好的结果,因为普通关键字匹配并不总是暗示相关性。为了解决这个问题,我们定义并解决了一项新的学术搜索任务,称为“基于方面的检索”,该任务允许用户指定方面以及查询以检索相关文档的排名列表。主要思想是使用特定于领域的知识库估算该方面的语言模型以及查询,并使用两者的混合物来确定文章的相关性。我们对开放研究语料库数据集对结果的评估表明,我们的方法在没有相关性反馈的情况下优于基于关键字的查询扩展。

Academic search engines allow scientists to explore related work relevant to a given query. Often, the user is also aware of the "aspect" to retrieve a relevant document. In such cases, existing search engines can be used by expanding the query with terms describing that aspect. However, this approach does not guarantee good results since plain keyword matches do not always imply relevance. To address this issue, we define and solve a novel academic search task, called "aspect-based retrieval", which allows the user to specify the aspect along with the query to retrieve a ranked list of relevant documents. The primary idea is to estimate a language model for the aspect as well as the query using a domain-specific knowledge base and use a mixture of the two to determine the relevance of the article. Our evaluation of the results over the Open Research Corpus dataset shows that our method outperforms keyword-based expansion of query with aspect with and without relevance feedback.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源