论文标题

使用延时相干成像和深度学习对活细菌进行早期检测和分类

Early-detection and classification of live bacteria using time-lapse coherent imaging and deep learning

论文作者

Wang, Hongda, Koydemir, Hatice Ceylan, Qiu, Yunzhe, Bai, Bijie, Zhang, Yibo, Jin, Yiyin, Tok, Sabiha, Yilmaz, Enis Cagatay, Gumustekin, Esin, Rivenson, Yair, Ozcan, Aydogan

论文摘要

我们提出了一个计算活细菌检测系统,该系统会定期捕获直径60 mm直径琼脂板内细菌生长的相干显微镜图像,并使用深神经网络分析这些时间段的全息图,以快速检测到相应物种的细菌生长和分类。通过快速检测到水样中的大肠杆菌和总大肠菌菌细菌(即克雷伯菌和克雷伯氏菌肺炎亚种),在水样中快速检测到了我们系统的性能。与环境保护局(EPA)批准的分析方法相比,针对基于黄金标准的培养结果证实了这些结果,将细菌生长的检测时间缩短> 12小时。我们的实验进一步证实,该方法在7-10小时内成功检测到90%的细菌菌落(在12小时内> 95%),精度为99.2-100%,并在7.6-12 h中正确识别其物种,精度为80%。利用样品在增长培养基中的样品进行预孵育,我们的系统在总测试时间9小时内达到了〜1个菌落形成单元(CFU)/L的检测限制(LOD)。该计算细菌检测和分类平台具有高度成本效益(每次测试〜$ 0.6)和高通量,在整个板表面上的扫描速度为24 cm2/min,使其非常适合与当前用于琼脂板上细菌检测的现有分析方法集成。通过深度学习,这种自动化和成本效益的实时细菌检测平台可以通过显着减少检测时间,同时自动化菌落的识别而无需标记或需要专家的需要,从而可以对微生物学的广泛应用进行变化。

We present a computational live bacteria detection system that periodically captures coherent microscopy images of bacterial growth inside a 60 mm diameter agar-plate and analyzes these time-lapsed holograms using deep neural networks for rapid detection of bacterial growth and classification of the corresponding species. The performance of our system was demonstrated by rapid detection of Escherichia coli and total coliform bacteria (i.e., Klebsiella aerogenes and Klebsiella pneumoniae subsp. pneumoniae) in water samples. These results were confirmed against gold-standard culture-based results, shortening the detection time of bacterial growth by >12 h as compared to the Environmental Protection Agency (EPA)-approved analytical methods. Our experiments further confirmed that this method successfully detects 90% of bacterial colonies within 7-10 h (and >95% within 12 h) with a precision of 99.2-100%, and correctly identifies their species in 7.6-12 h with 80% accuracy. Using pre-incubation of samples in growth media, our system achieved a limit of detection (LOD) of ~1 colony forming unit (CFU)/L within 9 h of total test time. This computational bacteria detection and classification platform is highly cost-effective (~$0.6 per test) and high-throughput with a scanning speed of 24 cm2/min over the entire plate surface, making it highly suitable for integration with the existing analytical methods currently used for bacteria detection on agar plates. Powered by deep learning, this automated and cost-effective live bacteria detection platform can be transformative for a wide range of applications in microbiology by significantly reducing the detection time, also automating the identification of colonies, without labeling or the need for an expert.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源