论文标题

通过参与用户互动,在微博中解释的谣言检测

Interpretable Rumor Detection in Microblogs by Attending to User Interactions

论文作者

Khoo, Ling Min Serena, Chieu, Hai Leong, Qian, Zhong, Jiang, Jing

论文摘要

我们通过学会区分社区对微博中的真实和虚假主张的反应来解决谣言检测。现有的最新模型基于建模对话树的树模型。但是,在社交媒体中,发布答复的用户可能会回复整个线程,而不是对特定用户。我们提出了一个后级注意模型(计划),以模拟变压器网络中多头注意机制之间的推文之间的长距离相互作用。我们研究了该模型的变体:(1)结构意识到的自我发项模型(STA-Plan),该模型(sta-plan)在变压器网络中纳入了树结构信息,以及(2)层次令牌和后级别的注意模型(sta-hitplan),该模型(STA-hitplan)以令牌级别的自我意见学习句子表示。据我们所知,我们是第一个在两个谣言检测数据集上评估模型的人:Pheme数据集以及Twitter15和Twitter16数据集。我们表明,我们最好的模型优于两个数据集的当前最新模型。此外,注意机制使我们能够解释令牌级别和后级别的谣言检测预测。

We address rumor detection by learning to differentiate between the community's response to real and fake claims in microblogs. Existing state-of-the-art models are based on tree models that model conversational trees. However, in social media, a user posting a reply might be replying to the entire thread rather than to a specific user. We propose a post-level attention model (PLAN) to model long distance interactions between tweets with the multi-head attention mechanism in a transformer network. We investigated variants of this model: (1) a structure aware self-attention model (StA-PLAN) that incorporates tree structure information in the transformer network, and (2) a hierarchical token and post-level attention model (StA-HiTPLAN) that learns a sentence representation with token-level self-attention. To the best of our knowledge, we are the first to evaluate our models on two rumor detection data sets: the PHEME data set as well as the Twitter15 and Twitter16 data sets. We show that our best models outperform current state-of-the-art models for both data sets. Moreover, the attention mechanism allows us to explain rumor detection predictions at both token-level and post-level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源