论文标题
使用精确时序改善粒子跟踪
Using precision timing to improve particle tracking
论文作者
论文摘要
硅跟踪探测器提供了出色的空间分辨率,因此即使在紧凑型探测器中,也可以为充电颗粒提供出色的动量分辨率。然而,在较低的动量时,硅中的多个散射降低了动量的分辨率。我们提出了一种使用硅检测器,也列出了一种替代方法来测量动量和减轻这种降解,该硅探测器还结合了时间测量。通过使用两个硅层之间的定时信息,可以解决曲率半径,因此可以求解粒子动量,与硅内的多个散射无关。我们考虑了三个示例:电子离子对撞机的全硅中心跟踪器,CMS检测器的简化版本,以及电子离子对撞机的正向检测器。对于1.5 t磁场中的75 cm直径跟踪器,时间可以改善动量低于500 meV/c的颗粒的动量测定。在3.8 T CMS磁场和1.2 M半径跟踪器中,时机可以改善跟踪到1.3 GEV/c的动量。该分辨率最好在中期。我们还讨论了一个更简单的系统,该系统由全硅跟踪器之外的单个定时检测器组成。
Silicon tracking detectors provide excellent spatial resolution, and so can provide excellent momentum resolution for energetic charged particles, even in compact detectors. However, at lower momenta, multiple scattering in the silicon degrades the momentum resolution. We present an alternate method to measure momentum and alleviate this degradation, using silicon detectors that also incorporate timing measurements. By using timing information between two silicon layers, it is possible to solve for the the radius of curvature, and hence the particle momentum, independent of multiple scattering within the silicon. We consider three examples: an all-silicon central tracker for an electron-ion collider, a simplified version of the CMS detector, and a forward detector for an electron-ion collider. For a 75 cm diameter tracker in a 1.5 T magnetic field, timing can improve the momentum determination for particles with momentum below 500 MeV/c. In the 3.8 T CMS magnetic field and 1.2 m radius tracker, timing can improve tracking up to momenta of 1.3 GeV/c. The resolution is best at mid-rapidity. We also discuss a simpler system, consisting of a single timing detector outside an all-silicon tracker.