论文标题

在小stokes中的细胞流中的惯性颗粒的分散体

Dispersion of inertial particles in cellular flows in the small-Stokes, large-Péclet regime

论文作者

Renaud, Antoine, Vanneste, Jacques

论文摘要

当对流占主导地位和扩散时,我们通过细胞流来调查惯性颗粒的传输,也就是说,对于满足$ \ mathrm {st} \ ll 1 $和$ \ mathrm {pe}} \ gg 1 $的$ \ mathrm {st} \ ll 1 $ \ mathrm {st} \ ll 1 $ \ mathrm {st} \ ll 1 $。从Maxey-Riley模型开始,我们考虑了划分的缩放$ \ mathrm {st} \,\ Mathrm {pe} = o(1)$,并得出近似于完整langevin动力学的有效的brownian动力学。然后,我们应用均质化并匹配的拼图技术来获得有效扩散率$ \ operline {d} $表征长期分散体的显式表达。此表达式量化了$ \叠加{d} $的方式,与$ \ mathrm {pe}^{ - 1/2} $成比例时,当被忽略惯性时,比流体重的粒子增加并减少较轻的颗粒。特别是,当$ \ mathrm {st} \ gg \ mathrm {pe}^{ - 1} $时,我们发现$ \ overline {d} $与$ \ mathrm {st}}^{st}^{1/2}/(1/2}/(\ log} $ \ mathrm {st} \,\ mathrm {pe} $的粒子和指数较小。我们验证了针对粒子动力学数值模拟的渐近预测。

We investigate the transport of inertial particles by cellular flows when advection dominates over inertia and diffusion, that is, for Stokes and Péclet numbers satisfying $\mathrm{St} \ll 1$ and $\mathrm{Pe} \gg 1$. Starting from the Maxey--Riley model, we consider the distinguished scaling $\mathrm{St} \, \mathrm{Pe} = O(1)$ and derive an effective Brownian dynamics approximating the full Langevin dynamics. We then apply homogenisation and matched-asymptotics techniques to obtain an explicit expression for the effective diffusivity $\overline{D}$ characterising long-time dispersion. This expression quantifies how $\overline{D}$, proportional to $\mathrm{Pe}^{-1/2}$ when inertia is neglected, increases for particles heavier than the fluid and decreases for lighter particles. In particular, when $\mathrm{St} \gg \mathrm{Pe}^{-1}$, we find that $\overline{D}$ is proportional to $\mathrm{St}^{1/2}/(\log ( \mathrm{St} \, \mathrm{Pe}))^{1/2}$ for heavy particles and exponentially small in $\mathrm{St} \, \mathrm{Pe}$ for light particles. We verify our asymptotic predictions against numerical simulations of the particle dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源