论文标题

MGCN:使用多尺度GCN的描述符学习

MGCN: Descriptor Learning using Multiscale GCNs

论文作者

Wang, Yiqun, Ren, Jing, Yan, Dong-Ming, Guo, Jianwei, Zhang, Xiaopeng, Wonka, Peter

论文摘要

我们提出了一个新的框架,用于计算描述符,以表征三维表面上的点。首先,我们提出了一种新的非学习功能,该功能使用图形小波将表面上的dirichlet能量分解。我们称此新功能小波能量分解签名(WEDS)。其次,我们提出了一个新的多尺度图卷积网络(MGCN),以将非学习功能转换为更具歧视性描述符。我们的结果表明,新的描述符WEDS比当前最新的非学习描述符更具歧视性,并且Weds和MGCN的组合比最先进的描述符要好。我们描述符的一个重要设计标准是对不同表面离散化的鲁棒性,包括不同数量的顶点的三角剖分。我们的结果表明,以前的图形卷积网络显着过于特定的分辨率甚至特定的三角剖分,但MGCN可以很好地推广到不同的表面离散化。此外,MGCN与以前的描述符兼容,也可以用于提高其他描述符的性能,例如热内核签名,波核签名或局部点签名。

We propose a novel framework for computing descriptors for characterizing points on three-dimensional surfaces. First, we present a new non-learned feature that uses graph wavelets to decompose the Dirichlet energy on a surface. We call this new feature wavelet energy decomposition signature (WEDS). Second, we propose a new multiscale graph convolutional network (MGCN) to transform a non-learned feature to a more discriminative descriptor. Our results show that the new descriptor WEDS is more discriminative than the current state-of-the-art non-learned descriptors and that the combination of WEDS and MGCN is better than the state-of-the-art learned descriptors. An important design criterion for our descriptor is the robustness to different surface discretizations including triangulations with varying numbers of vertices. Our results demonstrate that previous graph convolutional networks significantly overfit to a particular resolution or even a particular triangulation, but MGCN generalizes well to different surface discretizations. In addition, MGCN is compatible with previous descriptors and it can also be used to improve the performance of other descriptors, such as the heat kernel signature, the wave kernel signature, or the local point signature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源