论文标题

颜色限制和玻色网凝结

Color Confinement and Bose-Einstein Condensation

论文作者

Hanada, Masanori, Shimada, Hidehiko, Wintergerst, Nico

论文摘要

我们提出了对两个重要现象的统一描述:大量$ n $仪表理论中的颜色限制和Bose-Einstein Concensation(BEC)。我们专注于熵从$ n^0 $增加到$ n^2 $的限制/解次过渡,这持续存在于弱耦合区域。与对称组相关的不可区分性 - SU($ n $)或O($ n $)的规格理论,而S $ _n $在相同的玻色子系统中 - 对于形成凝结(限制)阶段至关重要。我们基于BEC的非对角线远距离顺序(ODLRO)和Polyakov回路的标准标准。 Polyakov环的相位分布的恒定偏移对应于ODLRO,并给出有限耦合时部分(DE)限制相的顺序参数。我们在弱耦合处明确证明了几种量子机械系统(即,空间体积或零空间体积的理论),并认为该机制扩展到大体积和/或强耦合。该观点可能对有限$ n $的限制有影响,以及通过量规/重力双重性的量子重力。

We propose a unified description of two important phenomena: color confinement in large-$N$ gauge theory, and Bose-Einstein condensation (BEC). We focus on the confinement/deconfinement transition characterized by the increase of the entropy from $N^0$ to $N^2$, which persists in the weak coupling region. Indistinguishability associated with the symmetry group -- SU($N$) or O($N$) in gauge theory, and S$_N$ permutations in the system of identical bosons -- is crucial for the formation of the condensed (confined) phase. We relate standard criteria, based on off-diagonal long range order (ODLRO) for BEC and the Polyakov loop for gauge theory. The constant offset of the distribution of the phases of the Polyakov loop corresponds to ODLRO, and gives the order parameter for the partially-(de)confined phase at finite coupling. We demonstrate this explicitly for several quantum mechanical systems (i.e., theories at small or zero spatial volume) at weak coupling, and argue that this mechanism extends to large volume and/or strong coupling. This viewpoint may have implications for confinement at finite $N$, and for quantum gravity via gauge/gravity duality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源