论文标题
在皮质组织的详细计算模型中预测电场刺激的影响
Predicting the Impact of Electric Field Stimulation in a Detailed Computational Model of Cortical Tissue
论文作者
论文摘要
近年来,由于其作为医疗干预的潜力,使用弱电场的神经刺激引起了兴奋。然而,研究这种刺激方式的研究受到了不一致的结果和研究之间的巨大变化的阻碍。为了开始解决这种可变性,我们需要正确地表征当前对基础神经元种群的影响。开发和测试能够捕获电场刺激对神经元网络的影响的计算模型。我们构建具有不同层和显式神经元形态的皮质组织模型。然后,我们采用电刺激模型,并进行多个测试案例模拟。将皮质切片模型与实验文献进行了比较,并证明可以捕获电生理反应对刺激的主要特征。即,该模型显示1)单个锥体神经元中的去极化水平相似,2)固有振荡的加速度和3)在不同层中振荡的空间曲线保留。然后,我们应用替代电场来证明该模型如何捕获对电场的神经元反应的差异。我们证明组织响应取决于层深度,顶端树突相对于田间的角度以及刺激强度。我们提供了公开可用的计算建模软件,该软件可以预测神经元网络对电场刺激的反应。
Neurostimulation using weak electric fields has generated excitement in recent years due to its potential as a medical intervention. However, study of this stimulation modality has been hampered by inconsistent results and large variability within and between studies. In order to begin addressing this variability we need to properly characterise the impact of the current on the underlying neuron populations. To develop and test a computational model capable of capturing the impact of electric field stimulation on networks of neurons. We construct a cortical tissue model with distinct layers and explicit neuron morphologies. We then apply a model of electrical stimulation and carry out multiple test case simulations. The cortical slice model is compared to experimental literature and shown to capture the main features of the electrophysiological response to stimulation. Namely, the model showed 1) a similar level of depolarisation in individual pyramidal neurons, 2) acceleration of intrinsic oscillations, and 3) retention of the spatial profile of oscillations in different layers. We then apply alternative electric fields to demonstrate how the model can capture differences in neuronal responses to the electric field. We demonstrate that the tissue response is dependent on layer depth, the angle of the apical dendrite relative to the field, and stimulation strength. We present publicly available computational modelling software that predicts the neuron network population response to electric field stimulation.