论文标题

空间形式部分脐带边界的域中的部分过度确定的问题

A partially overdetermined problem in domains with partial umbilical boundary in space forms

论文作者

Guo, Jinyu, Xia, Chao

论文摘要

在本文的第一部分中,我们考虑了空间形式中的部分过度确定的混合边界值问题,并将主要结果推广到\ cite {gx}中,以空间形式的部分脐带边界为一般域。确切地说,我们证明,当且仅当边界的其余部分也是脐带超出表面的一部分时,具有部分脐带边界的域中部分过度确定的问题就可以解决方案。在本文的第二部分中,我们证明了嵌入式超曲面的Heintze-karcher-Ros类型不平等,自由边界位于houshosper上或双曲线空间中的等距性超表面。作为一个应用程序,我们显示了Alexandrov类型定理,用于在这些设置中具有自由边界的恒定平均曲率超曲面。

In the first part of this paper, we consider a partially overdetermined mixed boundary value problem in space forms and generalize the main result in \cite{GX} into the case of general domains with partial umbilical boundary in space forms. Precisely, we prove that a partially overdetermined problem in a domain with partial umbilical boundary admits a solution if and only if the rest part of the boundary is also part of an umbilical hypersurface. In the second part of this paper, we prove a Heintze-Karcher-Ros type inequality for embedded hypersurfaces with free boundary lying on a horosphere or an equidistant hypersurface in the hyperbolic space. As an application, we show Alexandrov type theorem for constant mean curvature hypersurfaces with free boundary in these settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源