论文标题

在与卢卡斯序列的两个连续术语的幂有关的指数二约汀方程上

On the exponential Diophantine equation related to powers of two consecutive terms of Lucas sequences

论文作者

Ddamulira, Mahadi, Luca, Florian

论文摘要

令$ r \ ge 1 $为整数,$ {\ bf u}:=(u_ {n})_ {n \ ge 0} $是由$ u_0 = 0 $,$ u_1 = 1,$ u_1 = 1,$和$ u_ {n+2} = ru_ {n+1} ru_ {n+1}+n $ n $ n $ n $ n $ n $ n $ y $ lucas序列。在本文中,我们表明没有正整数$ r \ ge 3,〜x \ ne 2,〜n \ ge 1 $,因此$ u_n^x+u_ {n+1}^x $是$ {\ bf u} $的成员。

Let $r\ge 1$ be an integer and ${\bf U}:=(U_{n})_{n\ge 0} $ be the Lucas sequence given by $U_0=0$, $U_1=1, $ and $U_{n+2}=rU_{n+1}+U_n$, for all $ n\ge 0 $. In this paper, we show that there are no positive integers $r\ge 3,~x\ne 2,~n\ge 1$ such that $U_n^x+U_{n+1}^x$ is a member of ${\bf U}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源