论文标题
学会在飞行中捕捉仔猪
Learning to Catch Piglets in Flight
论文作者
论文摘要
在机器人技术中捕捉对象是一个重要的挑战。在本文中,我们提出了一个闭环控制系统,从两个传感器模式融合了数据:RGB-D摄像头和一个雷达。为了开发和测试我们的方法,我们从易于识别的对象开始:一只毛绒小猪。我们实施并比较了两种检测和跟踪对象并预测拦截点的方法。基线模型使用颜色过滤来定位环境中抛出的对象,而截距点是使用最小二乘在物理弹道轨迹方程上进行预测的。基于深度学习的方法使用人工神经网络进行对象检测和截距点预测。我们证明,我们能够通过我们的深度学习方法成功地在80%的情况下捕获小猪。
Catching objects in-flight is an outstanding challenge in robotics. In this paper, we present a closed-loop control system fusing data from two sensor modalities: an RGB-D camera and a radar. To develop and test our method, we start with an easy to identify object: a stuffed Piglet. We implement and compare two approaches to detect and track the object, and to predict the interception point. A baseline model uses colour filtering for locating the thrown object in the environment, while the interception point is predicted using a least squares regression over the physical ballistic trajectory equations. A deep learning based method uses artificial neural networks for both object detection and interception point prediction. We show that we are able to successfully catch Piglet in 80% of the cases with our deep learning approach.