论文标题

具有边界的3个manifolds的最小结晶

Minimal crystallizations of 3-manifolds with boundary

论文作者

Basak, Biplab, Binjola, Manisha

论文摘要

令$(γ,γ)$是连接的紧凑型3-manifold $ m $,$ h $边界组件的结晶。令$ \ MATHCAL {G}(M)$和$ \ Mathit K(M)$分别为$ M $的常规属和宝石 - 复杂性,让$ \ Mathcal {G}(\ partial m)$为$ \ partial m $的常规属。我们证明了这一点 $$ \ MATHIT K(M)\ GEQ 3(\ MATHCAL {G}(M)+H-1)\ GEQ 3(\ MATHCAL {G}(\ partial M)+H-1)。$$对于几个具有边界的3-Manifolds的宝石复杂性的$ M $的bounds bounts bounds bungs bounts bounts。此外,我们表明,如果连接了$ \ partial m $,并且$ \ mathit k(m)<3(\ mathcal {g}(\ partial m)+1)$,则$ m $是一个句柄。特别是,如果$ \ Mathit k(m)= 3 \ Mathcal {g}(\ partial m)$如果$ m $是一个handlebody,而$ \ Mathit k(m)\ geq 3(\ Mathcal {g}(\ partial m)+1)此外,我们获得了几种组合特性,以结晶具有边界。

Let $(Γ,γ)$ be a crystallization of connected compact 3-manifold $M$ with $h$ boundary components. Let $\mathcal{G}(M)$ and $\mathit k (M)$ be the regular genus and gem-complexity of $M$ respectively, and let $\mathcal{G}(\partial M)$ be the regular genus of $\partial M$. We prove that $$\mathit k (M)\geq 3 (\mathcal{G}(M)+h-1) \geq 3 (\mathcal{G} (\partial M)+h-1).$$ These bounds for gem-complexity of $M$ are sharp for several 3-manifolds with boundary. Further, we show that if $\partial M$ is connected and $\mathit k (M)< 3 (\mathcal{G} (\partial M)+1)$ then $M$ is a handlebody. In particular, we prove that $\mathit k (M) =3 \mathcal{G} (\partial M)$ if $M$ is a handlebody and $\mathit k (M) \geq 3 (\mathcal{G} (\partial M)+1)$ if $M$ is not a handlebody. Further, we obtain several combinatorial properties for a crystallization of 3-manifolds with boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源