论文标题
简单连接的域中的共形不变性
Conformal Invariants in Simply Connected Domains
论文作者
论文摘要
我们研究了复杂平面中简单连接的域的几个连形不变的数值计算,包括双曲线距离,减少模量,谐波测量和四边形的模量。我们使用的方法基于具有广义的Neumann内核的边界积分方程。提出了几个数值示例。我们通过考虑已知的分析解决方案的几个模型问题来验证方法的性能和准确性。
We study numerical computation of several conformal invariants of simply connected domains in the complex plane including, the hyperbolic distance, the reduced modulus, the harmonic measure, and the modulus of a quadrilateral. The method we use is based on the boundary integral equation with the generalized Neumann kernel. Several numerical examples are presented. We validate the performance and accuracy of our method by considering several model problems with known analytic solutions.